Study on Steel-Plastic Interface Bond Strength of Steel Wire Skeleton Plastic Composite Pipes ——High-Pressure Water Transmission Applications Based on GB/T 32439 Standard

1. Research Background


Steel Wire Skeleton Plastic Composite Pipes (SRTP), with a "high-strength steel skeleton + HDPE" structure (Figure 1), are increasingly used in urban water and gas networks. While their ring stiffness reaches SN12.5, interface bond failures account for 53% of leaks (2024 CPPIA data), especially under high pressure (>1.6MPa).

2. Core Issue: Interface Failure Mechanism

2.1 Bond Failure Modes


Through universal testing machines (GB/T 18369-2008) and SEM, three failure modes were identified:
![Failure Mode Schematic](Figure 2)


  • Interface debonding (68%): Bond strength <3.5MPa
  • Plastic tearing (22%): Insufficient HDPE strength
  • Steel corrosion (10%): Electrochemical corrosion at interface gaps

2.2 Key Influencing Parameters


Parameter GB Requirement Field Measurement Influence
Steel plating thickness (μm) ≥85 (galvanized) 70-80 ★★★★☆
Plastic MI (g/10min) 0.2-0.5 0.6-0.8 ★★★☆☆
Winding angle (°) 54.7±2° 50-58° ★★★☆☆

3. Interface Bond Optimization

3.1 Steel Surface Treatment


Comparison of pretreatment methods:


Treatment Surface Roughness Ra(μm) Bond Strength (MPa) Salt Spray Life (h)
Galvanized 3.2-4.5 4.1 1500
Galvanized + sandblasting 5.8-7.2 5.6 2500
Galvanized + chemical texturing 4.5-6.0 5.2 2000


Breakthrough:


  • Sandblasting creates 3D anchor structures (Figure 3)
  • Bonding area increased by 40%

3.2 Plastic Modification


Using PE-g-MAH as compatibilizer:


PE-g-MAH Content (%) Steel-Plastic Bond (MPa) Plastic Tensile Strength (MPa) MI
0 4.2 24 0.7
3 6.8 26 0.5
5 6.5 25 0.4

4. Structural Design Optimization

4.1 Winding Angle Optimization


Finite element analysis showed:


  • 54.7° winding angle carries 72% of hoop stress
  • ±2° deviation increases stress concentration by 18%

4.2 Double-Layer Structure


Innovative "inner plastic-steel-outer plastic" co-extrusion (Figure 4):


  • Inner HDPE: 3.0mm (corrosion resistance)
  • Outer HDPE: 4.5mm (steel protection)
  • PE-g-MAH interlayer: 0.3mm

5. Engineering Solutions

5.1 High-Pressure Standard


Based on GB/T 32439-2015, internal indicators:


Parameter GB Requirement Optimized Standard Test Method
Steel-plastic bond (MPa) ≥3.5 ≥6.0 GB/T 18369-2008
Hydrostatic strength (MPa) ≥4PN 4.5PN GB/T 6111-2018
RCP resistance Pass Crack length <100mm Full-scale test

5.2 Electrofusion Welding Process


"Four-Stage" welding control:


  1. Preheat: 120℃ for 60s
  2. Melting: 210℃ for 180s
  3. Pressure: 0.1MPa for 120s
  4. Cooling: Natural cooling <60℃

6. Field Test Case: Cross-River Water Project


Index Traditional SRTP Optimized SRTP Standard Requirement
Operating pressure (MPa) 1.6 2.0 -
5-year leakage rate (%) 2.1 0.3 ≤1.0
Joint tensile strength (kN) 85 120 ≥80

7. Future Technologies

7.1 Nano-Interface Enhancement


50nm TiO₂ coating on steel wires (Figure 5) increases bond strength by 30%.

7.2 Smart Welding Monitoring


Integrated infrared thermography + pressure sensors for real-time monitoring of:


  • Welding temperature distribution (±2℃ accuracy)
  • Interface bond quality grading (I/II/III)


Conclusion
This paper establishes a high-pressure reliability system through interface modification + structural design + process control. As a professional supplier, we provide:
✅ Custom high-pressure SRTP pipes (PN1.0-PN2.5)
✅ Steel-plastic bond strength testing
✅ Electrofusion welding process certification


Keywords: Steel wire skeleton plastic composite pipe, steel-plastic interface, bond strength, high-pressure water transmission, GB/T 32439

Sample Block Quote

Nam tempus turpis at metus scelerisque placerat nulla deumantos sollicitudin delos felis. Pellentesque diam dolor an elementum et lobortis at mollis ut risus. Curabitur semper sagittis mino de condimentum.

Sample Paragraph Text

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque de penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum.
You have successfully subscribed!