Optimization research on mechanical properties of MPP power corrugated pipe trailing pipe construction -- Application of non-excavation engineering based on GB/T 26671 standard

1. Research Background


MPP (Modified Polypropylene) power corrugated pipes, featuring a "corrugated structure + high-temperature resistance modification" (Figure 1), have become the preferred choice for trenchless laying of 10kV-35kV power cables. Compared to traditional PVC-C pipes, they increase pulling construction efficiency by 40%. However, in long-distance directional drilling (>500m) and large-curvature bends (R < 15D), pipe failures are prominent:


  • According to 2024 State Grid statistics, 32% of MPP pipe construction accidents are caused by tensile fractures.
  • 28% of municipal engineering reworks are due to bending instability.

2. Core Issue: Mechanism of Mechanical Failure in Pulling Pipes


Through full-scale pulling tests (referencing CECS 165:2004) and finite element simulation, three failure modes and key parameters were identified:

2.1 Failure Mode Analysis


Failure Type Mechanical Cause Typical 工况
Tensile Fracture Axial tensile stress > material yield strength Straight sections >800m
Bending Instability Local buckling at curvature radius <12D Bend sections crossing roads/rivers
Excessive Friction Friction coefficient between pipe wall and soil >0.35 Silty clay or backfilled gravel strata

2.2 Key Influencing Parameters


Parameter GB Requirement Engineering Pain Point
Short-term hydrostatic strength (MPa) ≥15 Instantaneous stress during pulling reaches 12-14MPa
Elongation at break (%) ≥200 Actual value only 150%-180%
Friction coefficient - Inner wall Ra >1.0μm

3. Experimental Research on Mechanical Performance Optimization

3.1 Material Modification Scheme


Using "core-shell" structure modification (Figure 2), ethylene-octene copolymer (POE) and nanocarbon fiber (CNF) were introduced into the PP matrix:


Material Formula Tensile Strength (MPa) Elongation at Break (%) Notch Impact Strength (kJ/m²)
Pure PP 24 150 4.2
PP+10%POE 22 350 7.8
PP+5%POE+3%CNF 28 280 12.5 (Optimal solution)


Modification Effects:


  • Tensile modulus increased by 17%, creep resistance enhanced.
  • Elongation at break maintained >200%, avoiding brittle fracture.

3.2 Corrugation Structure Optimization


Orthogonal tests optimized corrugation height (H), pitch (P), and wall thickness (t):


Scheme H(mm) P(mm) t(mm) Ring Stiffness (kN/m²) Unit Weight (kg/m) Pulling Stiffness Index*
A 12 25 3.0 8.5 6.2 1.37
B 15 20 2.8 9.8 5.8 1.70 (Optimal solution)
C 18 15 3.2 10.2 6.5 1.57


*Pulling Stiffness Index = Ring Stiffness / (Weight × Diameter)


Structural Innovation:


  • Variable-section corrugations (crest wall thickness +20%).
  • Inner wall with spiral 导流 ribs (friction coefficient reduced to 0.28).

4. Construction Process Optimization

4.1 Pulling Mechanics Calculation Model


Based on the Hess-McKeown formula, the critical pulling force formula was established:\(T = \frac{\pi D^2}{4} \cdot \sigma_y \cdot \eta\) Where:


  • D = outer diameter, \(\sigma_y\) = material yield strength
  • \(\eta\) = safety factor (recommended 1.5-2.0)

4.2 Three-Stage Construction Control


For dn110-dn250mm pipes:


Stage Control Parameter Traditional Process Optimized Process Performance Improvement
Pre-Pulling Lubricant viscosity (cP) 300-500 800-1000 Friction coefficient ↓32%
Constant Speed Pulling speed (m/min) 1.5-2.0 1.0-1.2 Stress fluctuation ↓45%
Bend Section Minimum curvature radius R≥10D R≥15D Bending strain ↓58%

5. Engineering Validation Case


Comparison results from a river-crossing power tunnel project:


Index Traditional MPP Pipe Optimized MPP Pipe Improvement
Maximum pulling length 600m 900m +50%
Minimum bend radius 12D 8D -33% (Suitable for special conditions)
Construction period 14 days 9 days -36%
Pipe loss rate 8% 2% -75%

6. Advanced Technology Extension

6.1 Self-Lubricating Coating Technology


Developed molybdenum disulfide-PTFE composite coating (Figure 3), reducing the inner wall friction coefficient to 0.15, close to steel pipes with plastic liners.

6.2 Digital Twin Pulling System


Integrated distributed strain sensors for real-time monitoring of:


  • Axial stress distribution (accuracy ±0.5MPa)
  • Dynamic curvature radius changes in bends (critical value warning)


Conclusion This paper breaks through the mechanical bottlenecks of MPP power corrugated pipes in trenchless pulling construction through material-structure-process collaborative optimization. As a professional supplier, we provide: ✅ Pulling mechanics calculation software ✅ Customized corrugation structure design services ✅ Trenchless engineering risk assessment reports


Keywords: MPP power corrugated pipe, trenchless pulling construction, mechanical performance, GB/T 26671, non-destructive testing

Sample Block Quote

Nam tempus turpis at metus scelerisque placerat nulla deumantos sollicitudin delos felis. Pellentesque diam dolor an elementum et lobortis at mollis ut risus. Curabitur semper sagittis mino de condimentum.

Sample Paragraph Text

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque de penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum.
You have successfully subscribed!