High-Temperature Performance Optimization and Cable Current Carrying Capacity of MPP Power Protection Pipes ——Power Cable Protection Applications Based on DL/T 802.11 Standard

1. Research Background

MPP (Modified Polypropylene) power protection pipes occupy 58% of 10kV-35kV cable protection (2024 China Electricity Council), but face two bottlenecks under high load:


  • >60℃ long-term temperature causes >5% thermal deformation, hindering heat dissipation
  • Low thermal conductivity 0.2W/(m·K) reduces cable current capacity by 22% vs. direct burial

2. Core Issue: High-Temperature Degradation Mechanism

2.1 Thermo-Electric Coupling Failure

TMA and cable current tests (GB/T 12527-2008) reveal: ![Thermo-Electric Coupling Schematic](Figure 1)


  • Temperature rise: Cable losses heat pipes to 70-80℃
  • Material softening: MPP Vicat temp 120℃, but crystallinity loss causes creep
  • Current reduction: Increased thermal resistance creates a vicious cycle

2.2 Key Parameters

Parameter GB Requirement Field Measurement Influence
Thermal deformation temp (℃) ≥93 95-100 ★★★★☆
Thermal conductivity (W/(m·K)) - 0.18-0.22 ★★★☆☆
Volume resistivity (Ω·m) ≥10¹² 10¹²-10¹³ ★★☆☆☆

3. High-Temperature Material Optimization

3.1 Nano-Thermal Composite Modification

"Thermal filler-insulating matrix" with 3% BN + 2% graphene:


Material Type Thermal Conductivity (W/(m·K)) Vicat Temp (℃) Volume Resistivity (Ω·m)
Traditional MPP 0.20 122 5×10¹²
Thermal MPP 0.55 135 2×10¹³
Steel pipe 45 - 1×10⁻⁷


Breakthroughs:


  • BN forms thermal network (Figure 2), graphene enhances interface heat transfer
  • Crystallinity increased from 50% to 65%, CTE reduced by 28%

3.2 High-Temp Formula

Adding 1% hindered phenol antioxidant + 0.5% light stabilizer:


Aging Time (h) Traditional MPP Tensile Retention (%) Thermal MPP Tensile Retention (%) Yellowness Index (ΔE)
1000 72 89 15
2000 58 78 22

4. Structural Design Optimization

4.1 Spiral 导流槽 Structure

"Spiral channel + 散热 fin" structure (Figure 3) vs. plain pipes:


  • Thermal resistance reduced by 35%
  • Cable current capacity increased by 18%
  • Ring stiffness maintained at SN8

4.2 Composite Insulation Structure

"MPP inner pipe + aerogel insulation" for high-temp scenarios (e.g., cable tunnels):


  • Outer pipe temperature reduced by 15℃
  • Cable lifespan extended by 10 years
  • Compressive strength increased by 25%

5. Engineering Solutions

5.1 Power Protection Standard

Based on DL/T 802.11-2019:


Parameter GB Requirement Optimized Standard Test Method
Long-term heat resistance (℃) 70 85 Hot air aging test
Thermal resistance (m·K/W) ≤1.5 1.0 Hot wire method
CTI ≥600 650 GB/T 6142-2005

5.2 Cable Current Calculation Model

Modified IEC 60287 formula:\(I = \sqrt{\frac{\Delta T}{R_{dc} \cdot (T_1 + T_2 + T_3)}}\) Where:


  • \(T_2\) (MPP thermal resistance) reduced by 30%

6. Field Test Case: 10kV Cable Project

Index Traditional MPP Thermal MPP Standard Requirement
Maximum pipe temperature (℃) 75 62 ≤70
Cable current capacity (A) 420 500 -
5-year thermal deformation (%) 4.8 1.2 ≤5

7. Advanced Technology Prospects

7.1 Phase Change Material Composite Pipe

Paraffin/graphite PCM (Figure 4) controls temperature via latent heat absorption, increasing current capacity by 25%.

7.2 Smart Temperature Monitoring Pipe

Distributed fiber temperature sensors monitor cable temperature (±0.5℃ accuracy) for overload alerts.


Conclusion This paper optimizes high-temperature performance through material modification + structural innovation + current calculation. As a professional supplier, we provide: ✅ High-thermal MPP power pipes (dn50-dn200mm) ✅ Cable current capacity assessment ✅ Third-party thermal testing reports


Keywords: MPP power protection pipe, high-temperature performance, thermal modification, cable current capacity, DL/T 802

Sample Block Quote

Nam tempus turpis at metus scelerisque placerat nulla deumantos sollicitudin delos felis. Pellentesque diam dolor an elementum et lobortis at mollis ut risus. Curabitur semper sagittis mino de condimentum.

Sample Paragraph Text

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque de penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum.
You have successfully subscribed!