Anti-Floating Performance Optimization of HDPE Double-Wall Corrugated Pipes in Soft Soil Foundations ——Collaborative Design for Structural and Construction Stability

1. Research Background


HDPE double-wall corrugated pipes face buoyancy risks in soft soil (bearing capacity <80kPa) and high groundwater (depth <2m):


  • Coastal city statistics show 12% flotation rate during rainstorms, causing joint separation and deformation
  • Traditional anti-floating measures (e.g., concrete blocks) increase costs by 25% and reduce pipe flexibility

2. Core Issue: Buoyancy Mechanism

2.1 Buoyancy Model


Critical buoyancy condition based on Archimedes' principle:\(G + F_f \geq \rho_w \cdot V \cdot g\) Where:


  • G = pipe weight, \(F_f\) = soil friction
  • \(\rho_w\) = groundwater density, V = displaced volume

2.2 Key Parameters


Parameter Traditional Design Optimization Goal
Unit weight (kg/m) 8-12 Increase to 15-18kg/m
Friction coefficient 0.2-0.3 Increase to 0.4-0.5
Backfill density (kg/m³) 1800 Increase to 2000kg/m³

3. Anti-Floating Structure Optimization

3.1 Counterweight Design


Innovative "internal weight ring + external pressure groove" (Figure 1):


  • Unit weight +50% (dn300 from 10kg/m to 15kg/m)
  • Safety factor increased from 1.05 to 1.52
  • 85% flexibility retained

3.2 Structure Comparison


Structure Type Weight (kg/m) Safety Factor Ring Stiffness (kN/m²)
Plain pipe 10 1.08 8
Counterweight pipe 15 1.55 10
Concrete pipe 80 3.20 120

4. Construction Optimization

4.1 Anti-Floating Backfill


"Three-Layer Backfill" (CJJ/T 30-2021):


Layer Material Thickness (mm) Compaction Friction Coefficient
Bottom Medium-coarse sand 200 ≥90% 0.35
Middle Graded gravel + geogrid 300 ≥95% 0.50
Top Clay 500 ≥92% 0.25

4.2 Anchor Design


Developed "U-shaped anchor + steel belt" system (Figure 2) with 8kN/m pullout force:


  • Anchor spacing 2m
  • Steel belt strength 200MPa
  • Applicable to dn200-dn800mm

5. Engineering Solutions

5.1 Anti-Floating Standard


Based on GB/T 50470-2019:


Parameter GB Requirement Optimized Standard Test Method
Anti-floating safety factor ≥1.1 ≥1.5 Buoyancy calculation and test
Pullout force (kN/m) - ≥6 Pullout test machine
Backfill friction coefficient - ≥0.45 Direct shear test

5.2 Stability Calculation


Finite element-based safety factor formula:\(K_f = \frac{G + \mu \cdot (P + W)}{F_b}\) Where:


  • P = surcharge, W = backfill weight
  • \(\mu\) = friction coefficient, \(F_b\) = buoyancy

6. Field Test Case: Coastal Development Zone


Index Traditional Pipe Anti-Floating Pipe Standard Requirement
Flotation rate (%) 12 1 ≤3
Construction cost (¥/m) 280 320 -
5-year deformation (%) 5.2 2.1 ≤3

7. Advanced Technology Prospects

7.1 Smart Buoyancy Monitoring


Integrated water pressure sensors + inclinometers for real-time buoyancy-weight balance monitoring (±5% accuracy).

7.2 Bionic Root Anchoring


3D mesh anchors inspired by mangrove roots increase pullout force by 40%.


Conclusion This paper develops an anti-floating system through counterweight structures + backfill optimization + anchoring reinforcement. As a professional supplier, we provide: ✅ Custom anti-floating pipes (dn200-dn1200mm) ✅ Soft soil anti-floating design calculations ✅ Third-party anti-floating test reports


Keywords: HDPE double-wall corrugated pipe, anti-floating performance, soft soil foundation, pullout force, CJJ/T 30

Sample Block Quote

Nam tempus turpis at metus scelerisque placerat nulla deumantos sollicitudin delos felis. Pellentesque diam dolor an elementum et lobortis at mollis ut risus. Curabitur semper sagittis mino de condimentum.

Sample Paragraph Text

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut blandit risus. Donec mollis nec tellus et rutrum. Orci varius natoque de penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut consequat quam a purus faucibus scelerisque. Mauris ac dui ante. Pellentesque congue porttitor tempus. Donec sodales dapibus urna sed dictum.
You have successfully subscribed!